
EFFECT OF THE NONLINEAR DEPENDENCE OF SURFACE TENSION ON TEMPERATURE 

ON THE SHAPE OF A FREE SURFACE WITH CONVECTIVE MOVEMENT IN A LIQUID 
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A considerable number of works have been devoted to the effect of capillary forces on 
liquid equilibrium and movement under conditions close to weightlessness. It should be noted 
that with normal gravitation when the specific liquid surface is large, capillary forces may 
become decisive. To a considerable extent the diversity of capillary forces is due to the 
dependence of surface tension on temperature and the concentration of surface-active sub- 
stances. 

Recently, several works have appeared [1-3] in which the anomalous dependence of surface 
tension coefficient on temperature is considered: 

~1 = ~oI + a l (  T '  - -  T* )  2, ~ol = const ,  a l  = const .  ( 1 )  

This preceded a series of experiments [4, 5] which revealed the existence of a dependence 
= ol(T') for a broad class of substances, e.g., for aqueous solutions of high molecular 

alcohols, some binary metal alloys, and nematic liquid crystals. 

This work is a theoretical consideration of nonstationary thermocapillary (TC) and 
thermogravitation (TG) convection in a thin layer of viscous incompressible liquid for the 
nonlinear dependence of surface tension coefficient on temperature according to rule (i). 
The flow which arises is compared with movement characteristics when the surface tension co- 
efficient depends on temperature according to a linear rule 

a 2  = a 2 o  - -  ~2 T ' ,  a2o = const ,  a2 = const ,  a 2 1 > 0 .  ( 2 )  

Statement of the Problem. In the initial instant of time a radiation pulse (e.g., a 
laser pulse) passes through a surface within a liquid of thickness H occupying a round cylin- 
drical cell of radius R (R >> H). Due to absorption of the radiation within the volume of 
the liquid in the track, a region of higher temperature arises with a maximum located at the 
surface of the liquid, and heating decreases quite rapidly from the center. Energy distribu- 
tion within the radiation beam is assumed to be Gaussian. In the following instants of time 
the heat source does not operate. The bottom, side walls of the cell, and the free liquid 
surface are thermally insulated. It is assumed that the duration of the laser pulse is short 
compared with the typical time of convective heat and mass transfer. For example, in an ex- 
periment in [6] the pulse duration was 10 -7 sec. Consequently, in the initial instant of 
time in the vessel there is equilibrium temperature distribution 

T' = To + (T~ - To) exp ( - ( r ' / a ' )  ~ § ~ ( z ' -  ~)). (3)  

Here T O is temperature of the whole liquid before the start of irradiation; T l is maximum 
temperature in the heated region; a' is radiation beam radius; a is liquid radiation absorp- 
tion factor. The thermal nonuniformity formed causes TC and TG convection in the layer. It 
is assumed that changes of liquid physical parameters as a result of a change in temperature 
are negligibly small, with the exception of a change in density and surface tension coeffi- 
cients. 

Taking account of these assumptions mathematical formulation of the problem includes 
equations: Navier-Stokes, thermal conductivity, and continuity described in Boussinesq 
approximations. 

In view of the fact that in this work the change in liquid layer thickness h ~ = h'(r', 
t') is considered, we shall assume that 
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P' = Po -}- pg(h ' (r ' ,  t ' )  - -  z ' )  -[- p "  

[p" = p " ( r ' ,  z ' ,  t ' )  i s  d e v i a t i o n  of  p r e s s u r e  from h y d r o s t a t i c ,  P0 i s  e x t e r n a l  p r e s s u r e ,  
i s  o r i g i n a l  d e n s i t y ] .  

In a cylindrical coordinate system the equations have the form 

Ou' -5 u'  Ou-- _I_ V' Ou' Oh' I 0 /  
or'-'; Or' Oz -'-7 ---- g or' P Or' -5 ~V2U" 

~a~' + u' d +  v" oJ i op" § g[~ (T' - -  To) + vV~v ', 
Ot' Or t ~z' "~- P Oz' 

OT' OT' -5 V' OT' 
- -  ~ - - ' 7  = ~ v ~ T  ' ,  or' -5 U' Or' Oz 

o (,"u') + oW = O. 
/ Or' Oz' 

Boundary conditions at the side walls and the bottom are attachment conditions for the 
liquid: 

u' = v '  = 0 ,  z' - ~ 0 ,  r' = R .  

There are symmetry conditions at the cell axis: 

u' = av'/Or' = O, r' = O. 

At the free surface [7] with z' = h'(r', t') 

(P ' - -  po) n~ --- g~nh  + gn~ ( i-~ + l l + x~ ~ �9 i 1,3, k t ,3,  Ox h T~ ~ "%! (4) 

where Oik is viscous stress tensor; x is tangent to the liquid surface; n is the normal di- 
rected into the liquid; I/R 1 + I/R= is liquid surface curvature. 

By using known mathematical expressions for surface curvature and the normal to it we 
obtain from Eq. (4) in projections on axes r' and z' the following expressions: 

= ---Tar - pv --a~, + a~'] - ~i + (/~')~- i + (~,)~ + + 

(0o 011 

p" = 2pv ~ -- pv h' + . . . .  

(5) 

Here h' = 3h'/Sr', h' = 82h'/@r'=. At the surface the vertical component of liquid velocity 
equals the velocity of the change h'(r', t'): 8h'/at' + u'3h'/@r' = v' We also impose a 
symmetry condition on the shape of the surface @h'/ar' = 0, r' = 0. At the side surface of 
the cell we prescribe a condition for damping of movement h' = H, @h'/3r' = 0, r' = R. 

The initial conditions are a condition for liquid immobility u' = v' = 0, a flat sur- 
face h' = H, and prescribed temperature distribution (3). Dimensional values are used in 
the equations: u' and v' are radial and vertical components of velocity, v and K are coefficients 

of viscosity and thermal diffusivity. 

Let L be the characteristic dimension of a region in which liquid movement is localized 
in the radial direction. Then the fact that it will be localized is known from numerical 
calculations in [8] and an experiment [6]. Dimension L is governed by the radius of a circle 
outside which surface tension is almost unchanged and the liquid does not move. The radius 
of the light spot heating the liquid with t = 0 is less than or of the order of L, a' ~ L. 
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In view of absence of liquid movement with r' > L transfer of heat in this region may only 
occur as a result of thermal conductivity. 

Then we shall consider a thin layer of liquid: e = H/L << i. In the approximation of 
the thin layer radial heat transfer due to thermal conductivity is insignificant. Then 
boundary conditions with r' + L take the form 

Of'/Or' = O, u' = v' = O, h' =H, Oh'/&' = O. 

At the bottom and free surface boundary conditions for temperature are written as 

O7' /Oz '  = O, z '  ---- O, 

OT' /Oz '  - { - /EOT ' /Or '  ---- O, z '  -= h ' ( r ' ,  t ' ) .  

A relationship between velocities v' ~ Eu' follows from the continuity equation. 

We estimate radial velocity from Eq. (5) assuming that the surface is not curved. Then 

Ou" Or" 1 O0 do OF" 
P~ -- + - -  ~" -- Or" Oz' Or'] Or' dT' 

whence for linear relationship ( 2 )  characteristic velocity U o 2  = a2ATH/pvL. In the case of 
nonlinear relationship (i) do/dT' = 2~l(T' -- T*), temperature T* corresponding to the mini- 
mum surface tension changes within the limits T O S T* S TI. In estimates we shall assume 
that dol/dT' - -2~IAT/2 = --~IAT. The sign is selected so that with T' < T* the direction of 
liquid movement at the surface corresponds to the case of a linear relationship o = c2(T' ). 
Then u0z = ~l(AT)2H/pvL. 

The ratio of gravitation and thermocapillary forces is specified by the Bond number Bd. 
For a nonlinear dependence oI(T' ) 

Bd pg~H2 pg~ATH Pg 
"-72-,. 

a i A T  (zl ( AT)2/H Pth 

In this work the case of Bd ~ 1 is considered, consequently, pg" ~ Pth", and as a scale 
for pressure it is possible to take any of these values. Let Pch = Pth" = el(AT) 2/H. 

Taking account of the estimates made we write dimensionless variables: 

r = r ' / L ,  a = a ' / L ,  z = z ' / H ,  h = h ' / H ,  

u = u ' / u  o, u = v ' / (eUo) ,  p - -  P"/P~h, 

0 = ( T '  - -  T o ) / A T ,  O* = ( T *  - -  T o ) / A T ,  t = t ' /~ ,  A T  = T 1 - -  To.  

We introduce the time scale later. 

In dimensionless variables equations and boundary conditions have the form 

v~ at + e2 R e  u -57r + v-b-z - -  Or ~T ar + ~r k ar ] - -  7{ + az 2, 

e2H ~ Ovat + etRe[u~_k &, &,~ 8p i 0 ../Ov~ 2 02v 
v~ e ~ +  BdO + ~ p ~ [ r ~ ]  + ~ e . ~,- 

"v'~ ot + u ~ + v ~ z  P r R e =  - b - ~  /"Wr + 

020 1 0 3u 
+ 7-fi' (ru) + o~ 7 ~  ~- = 0 .  

Here Pr = v/<; Re = u0L/v; ~T = EAT. There are initial conditions with t = O: 

u = v = O, h = 1, 0 = e x p  ( - - rZ /a  2 ~ r - -  t)) , ;  

a n d  b o u n d a r y  c o n d i t i o n s :  

(6) 

(7) 
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u -=- v =  O, O0/Oz = O, z =  0; 

u - =  v =  O, O010r= O, r =  1; 

u =  Or~Or=O,  r =  O. 
(8) 

At the free boundary with z = h(r, t) 

0it Oh' 0"10 
Ph + T, + ~2 + _ _  

(oo .oo) 
4 2 ( 0 * - - 0 )  y r + h ~  ] / i + s 2 ( ~ ) . 2 - - 0 ,  

p = a  2 2 y  z -  y r + ~  - -  

s ' c h  o t i + 8 2 

+2(O*--e) ~+i~z j / i+a s(i)z' ~ + s2i~r=O' 

L Oh Oh Oh Oh 
% ~ o t + u ~ = v ;  ~ = 0 ,  r = 0 ;  h = l ,  y r = 0 ,  r = l .  

+ 

(9) 

It can be seen from Eqs. (6)-(9) that in the nonstationary problem in question there are sev- 
eral time scales connected with development of velocity and temperature fields, and with a 
change in layer thickness. 

We introduce the time scales: x~ = H2/v is the time of the nonstationary process of 
liquid movement, x 2 = L/u0 is typical time for a change in surface shape, x3 = Pr H2/v is 
time for development of the temperature field. We assume that Bd ~ i, Re ~ i, Pr ~ i, a01/ 
(at(AT) a) ~ i. Then, x l  ~ x3, x 2 / x z  = i/e2Re. 

Case of Short Times. We assume that x = x I. By ignoring in Eq. (6) terms of the order 
of e 2 and higher, we obtain 

Ou 02u Op Bd ah 
Ot Oz 2 Or ~T Or ' 

Op Bd0, pr~ 020 I 0 ov 
o~ = ~-t = o~2' 7 ~ (ru) + ~ = O. 

(lO) 

At the free surface instead of (9) we have 

oh O, p -- O, 0o ou oo 
0-7= 7z=0, ~=2(0--0")~. ( l l )  

Initial conditions (7) and remaining boundary conditions (8) are unchanged. 

From the first equation in (Ii) we find that h = I, i.e., at a given stage the shape 
is unchanged. Then in the first equation of (i0) we drop the term (Bd/~T)Sh/Sr. By solving 
Eqs. (i0) successively by the Fourier method we obtain expressions in the form of series for 
temperature, pressure, and velocity. The expression for temperature is used subsequently 
with asymptotic combination of solutions in the case of short and long times 

0 = exp -- ~ ~H + 
(12) 

+ ~ 2 ( ( - - i ) h - - e x p ( - - a H ) ) e x p ( , ( ~ k ) ~ t / P r )  } 
h=o aH( l  + (nk/(aH)) 2) Cos~kz. 

The relationships for velocity and pressure are not provided herein view of their size. It 
should be noted that in this approximation expressions for temperature and pressure do not 
depend on the form of o = o(T). 
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The series obtained are summed on a computer. Curves are provided for a = 0.2, aH = 2, 
Bd = i, and Pr = i. Shown in Fig. i is the temperature distribution over the radius at the liq- 
uid surface at different instants of time. Curves 1-3 correspond to times 0.01, 0.I, 1.0. 
As follows from (12), for time t ~ i temperature distribution does not depend on the coordinate z , 
and consequently curve 3 relates to temperature not only at the surface, but also for any 
z with t ~ i. This limiting expression will be used as an initial condition for temperature 
with long times. 

Presented in Fig. 2 is the distribution of component velocities at instant of time t = 
0.i for different values of 8*: a is radial velocity at the liquid layer surface, b is ver- 
tical velocity at depth z = 0.95. With short times the liquid surface is still undeformed 
and the vertical velocity component at the surface equals zero. Curves 1-6 correspond to 
e* = 0, 0.2, 0.3, 0.4, 0.6, 0.8, i, and here and subsequently a broken line relates to the 
linear relationship o = o2(T'). 

As has been assumed, for all values of 8* liquid movement is localized in a small region 
adjacent to the hot spot. The direction of liquid movement is determined by the direction of 
TC force operation, i.e., the sign of the gradient dol/dT' = 2~I(T' - T*). With 8" = i, 
dol/dT' < 0 the qualitative picture of velocity distribution is similar to the linear case 
but with a slower increase close to the center of the vessel. With 8" = 0 within the volume 
spiral movement arises in the anticlockwise direction. For intermediate values of 8* radial 
velocity takes both positive and negative values depending on the sign of dol/dT' 

It is noted that with a change in sign of dol/dT' there is a delay in the change of di- 
rection for liquid movement in the surface layer. In view of the finite reserve of heat the 
temperature at the surface falls rapidly with time. At instant of time t = 0.i at'the sur- 
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face there is already no temperature 8* ~ 0.6 (Fig. i, line 2), but in the liquid movement 
is maintained towards the center of the vessel (Fig. 2a, curve 4) in a small region close to 
the cell axis (Fig. 2b, curves 4 and 5 show movement upwards). This is connected with the 
inertia of volumetric spiral movement. 

In Fig. 3, where the distribution is given for radial velocity over the height of the 
layer close to the axis (r = 0.08, on axis u E 0), it is possible to follow development of 
movement within the layer (a is radial velocity for the initial instant of time t = 0.01, b 
is for t = 0.i, curves 1-6 relate to 8* = 0, 0.2, 0.4, 0.6, 0.8, i). 

As follows from Fig. 3a, the velocity close to the surface is much greater than within the 
volume. This means that in the initial instant of time the effect of TC forces which govern 
surface movement is greater than the effect of TG forces responsible for the velocity field 
within the layer. With time TC movement spreads over the whole layer, and the contribution 
of TG convection does not change significantly. 

The maximum value of the flow function ~max specifies the intensity of movement. In the 
case of the nonlinear relationship o = Ol(T') it may take both positive and negative values 
which correspond to the change in direction of TC force operation. Shown in Fig. 4 is the 
dependence of ~max on time for 8* = 0.2, 0.4, 0.6, 0.8, i (curves 1-5). For small 8* (Fig. 
4b) the intensity of "anomalous" spiral movement increases rapidly -- it reaches a maximum 
more rapidly the greater 8* -- and then as high temperatures disappear from the system (8 > 
8*) with a delay it decreases to zero. In an ever spreading region, where the relationships 
8 < 8* are always fulfilled (the normal direction of operation of TC forces, ~+), with the short 
times in question the intensity of movement with time increases and emerges into a steady 
state (Fig. 4a). 

1 8 2  



Case of Long Times. 
they should be ignored. 
(6)-(9) takes the form 

With �9 = ~2 nonstationary terms in Eqs. (6) have the order s2 and 
Here an equation is retained for the surface shape and the set of Eqs. 

O2u Op + Bd Oh 
Oz2 Or ~T Or' 

op Bd0, --= ~ 0, l ~ r  ov 0--* = Oz2 T (ru) + ~ = O. 

( i 3 )  

At the free surface we have 

au 2 (0 - -  0") a0 o0 Oh Oh 
P = 0 '  ~-z = ~r' ~ = 0 ,  ~ 7 = v - - u - d 7 ,  

Oh Oh 
h = t ,  t = O , ~ - r  = 0 ,  r = O ;  h = l ,  3 7 = 0 ,  r = t .  

(14) 

Boundary conditions at the bottom (z = 0) and with r + 1 remain the same as for short times. 

By solving Eq. (8) for temperature, from (8) and (13) we obtain 

0 = O(r, t), O0/Or = O, r - +  1. (15) 
Whence it follows that a uniform temperature distribution is established over z, and 

this agrees with the conclusions made in the case of short times with t + ~ (12). The limit- 
ing solution of (12) for short times relates to (15) with h(r, 0) = i. Naturally for the 
form 0(r, h(r, t)) a limiting expression is taken 

r2~ i -- exp (-- aHh (r, t)) 
\ 

0 (r, t) = exp - -  -fi] aHh (r, t) 

Then by solving (13) using Eqs. (8) and (14) we find that 

p = B d 0 ( z - - h ) ,  

v =  7 - ~ r ~ ]  z 2 ( 9 - 0 * ) + B d  ~ 6 + + 

Bd (i - -  ~T0) T + Bd K --  00 t 0 {!0~2 + ~ ~ ,-- a-~ (l - ~ro) - z~ ka~], 

u=~~ (2z(9 --  0 ' ) +  B d ( ~  hz~2 +-7-h2z)) + 

Bd (1 --  ~T0) t~ ( ~  hz) .  + ~  

For h(r, t) an expression is obtained 

I[ c )  h3]l Oh i 0 r O0 h* Bd( t__~TO)  T 
at -- 7 ~r ~ h2(0*-0)-Bd~ +~TT (16) 

We solve it assuming small surface deformations. We write h(r, t) = 1 + ~Tf(r, t), where 
f ~ i, ~T ~ 10-3 Here we assume that 0h/St = STSf/St ~ i, i.e., 8f/St ~ I/~T. T~hen 

O ~ e x p  - - - f i  aH + ~Tl(r ,  t) e x p ( - - a H ) - -  

i--exp(--aH)~l (rz) 
af t  / j = e x p  - -  -~ (A -6 ~Tf (r, t) B).  

(i7) 

By substituting (17) in Eq. (16) and using expansion into a Taylor series with respect 
to ~T, we have 
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~T Of~t = "~ }" q- q- 7_ i -- 2r2~a2 ] exp - -  2r2~--a" ] 

( 1 (") 4A ~ , e x .  

t ( t = - O ) = O , ~ ( r = O ) = O ,  

] (r-+ co) = ~ (r--+ oo) = O. Or 
S o l v i n g  ( 1 8 )  by  means  o f  z e r o - o r d e r  H a n k e l  t r a n s f o r m a t i o n s  we f i n d  t h a t  

( 1 8 )  

3 ~Tl--exp(--aH){ [ ( r ~') 
h = i + 8 Bd aH ( B d - -  80") exp - -  ~ - -  

--exp 7 T~T~ -{] ] {-k 3~Ta2) ] + 

+ 4 i--exp(--~zlI) [exp ( - - ~ )  - a l l  

Shown in Fig. 5a is surface shape at instant of time t = 5"10 -4 for different 6", the 
broken line corresponds to the linear case, and curves 1-8 relate to 8" = 0, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.8, i. Curves are plotted for a = 0.2, ~H = 2, Bd = i, 8T = 10-3" With small 
changes in these parameters the substance of the picture is unchanged. There exist those 
8* (in our case 8* E 0.3) when close to the axis the surface protrudes. For 8* = 0.5 (curve 
5) the surface with r + 0 is convex, and with an increase in distance from the axis deflec- 
tion develops and then again there is curvature. In the linear case close to the axis only 
deflection is observed, which corresponds to the experimental observations in [9]. 

Shown in Fig. 5b is the change in surface shape in relation to Bond number (8" = 0.4, 
t = 5-10-4). Since in the theoretical consideration it was assumed that Bd ~ i, the Bond number 
changes within small limits (0.7 E Bd E 1.3). Curves i-5 relate to Bd = 0.7, 0.9, i, i.i, 
1.3. It can be seen that with an increase in Bd, i.e., with an increase in the role of TC 
convection, there is an increase in surface shape deviation from flat. 

i. 
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ANALOG OF THE SHALLOW-WATER VORTEX EQUATION FOR HOLLOW AND TORNADO-LIKE 

VORTICES. 

HEIGHT OF A STEADY TORNADO-LIKE VORTEX 

V. V. Nikulin UDC 532 .5  

The analog of the shallow-water vortex equation for hollow and tornado-like vortices 
is obtained in the long-wave approximation for an inviscid, incompressible, and nonuniform 
fluid. A steady, vertical tornado-like vortex is examined, whose central fluid is lighter 
than that outside the center. A sharp criterion is obtained, which distinguishes the case 
where the flow is bounded or unbounded in height. Calculation of the vortex height accord- 
ing to theoretical formula agrees in order of magnitude with the results of laboratory mea- 
surements and observations of naturally occurring dust devils. 

i. Let us consider an incompressible, inviscid, nonuniform fluid in a gravitational 
field. The flow is assumed to be rotationally symmetric. We introduce a cylindrical coordi- 
nate system (r, ~, z), where r is the radius, and ~ is the aximuthal angle. The z axis is 
directed opposite the force of gravity. The flow is divided into two regions in space: in 
region I, r E r0(z, t); in region II, r0(z , t) ~ r E r,. Here r, is a constant, r0 is in 
general a function of z and t, and t is the time. At the boundary r0, there can be a discon- 
tinuity in density and the component of velocity tangential to this boundary. The velocity 
components corresponding to (r, ~ , z) are denoted by (u, v, w), and p, p, g are the pressure, 
density, and acceleration of gravity, respectively. 

In order to change over to the long-wave approximation, subsequently we introduce char- 
acteristic length, velocity, and density scales. As the unit of length, we adopt the char- 
acteristic scale of change along the z axis and for unit velocity, the magnitude of the rota- 
tional component for r = r0, z = 0, t = 0. The characteristic density is set equal to i. 
Then the characteristic time, pressure, and acceleration are equal to I. The characteristic 
scale for change along the r axis is denoted by 6. It is assumed that 6 << i. 
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